等式的性质说课稿

时间:2024-08-29 10:42:22
等式的性质说课稿

等式的性质说课稿

作为一名教学工作者,总归要编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。我们该怎么去写说课稿呢?下面是小编为大家整理的等式的性质说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

等式的性质说课稿1

尊敬的各位评委、老师:

大家好!

很高兴能把《不等式的基本性质》一课的教学设计向大家作一展示。下面我将从教材分析、教学目标、教学方法、教学流程、教学评价和教学反思几个方面来阐述我对本节课的安排。

一、教材分析

1. 教材的地位和作用

不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。本课位于湖南教育出版社义务教育课程标准实验教科书七年级上册第五章第一节的内容,主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”。同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。

2.教学重难点

重点:不等式的概念和不等式的基本性质1。

难点:利用不等式的基本性质1进行简单的变形。

二、教学目标

知识目标:

在了解不等式的意义基础上,掌握不等式的基本性质1。

能力目标:

①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。

②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题,培养学生的数感,渗透数形结合思想。

情感目标:

①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。

②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。

通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。

三、教学方法

1、采用激趣——探究法进行教学,师生互动,共同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。

四、教学流程

我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。

(一)创设情境,激发兴趣:

师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。

设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。

学习目标:

1、 理解不等式的基本性质1。

2、 会解简单的不等式。

此时我出示本节课的学习目标和归纳出不等式的概念:

归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。

(二)探究新知、总结规律

在这个环节,我主要设计了以下二个活动来完成教学任务:

活动1:1、你能用“﹤”或“﹥”填空吗?

(1)5﹥3 (2)6﹥4

5+2﹥3+2 6+a﹥4+a

5-2﹥3-2 6-a﹥4-a

2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果?

(2)小组合作讨论交流,大胆说出自己的“发现”。

本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。

活动2:你能用自己的语言概括不等式的性质吗?

本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1:

不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。

当学生概括出结论后,为了使学生对不等式的基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考:

性质中的“不等号方向不变”的含义是什么?

使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。

在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。

通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。

设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。

(三)针对练习、学习例题

1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。

如果x-5>4,那么两边都 ,可 ……此处隐藏23833个字……美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。

结合本节课的教学目标,确定本节课的

重点是不等式性质及简单应用.

难点是不等式性质的探索过程及性质3的应用.

为了突出重点,突破难点:采用实物投影仪展示学生不同层次的思维探索过程,化抽象为具体;用类比,对比的方法化生疏为熟悉,化零散为系统.

二、教法分析,教学手段的选择:

为了体现以学生为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即采取观察猜测---直观验证---推理证明---得出性质。在知识的发生发展中渗透类比,分类讨论的数学思想,学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.为了突破学生对不等式性质3,理解的困难,采取了类比作化抽象为具体的方法来设置教学。

三、学法指导:

由于七年级学生有比较强的好奇心,好胜心以及显示欲.同时经过一年初中数学的思维锻炼,已经初步具备了提出问题,分析问题和解决问题的能力,基于学生的以上心理特点及认知水平,所以采取动手实践,自主探索,合作交流的学习方法.这样可以使学生积极参与教学过程.在教学过程中展开思维,进一步培养学生提出问题,分析问题,解决问题的能力,进一步理解类比,分类讨论等数学思想.

四、教学过程设计

基于以上教材分析,紧紧围绕本节课的教学目标,从学生的认知水平出发进行如下的教学设计:

1.创设情境,类比猜想

提出问题:今年我比你大10岁,5年后,我比你大还是比你小,大几岁,小几岁?

2年前,我比你大还是比你小,大几岁,小几岁?

类比等式的性质1,不等式有类似的性质吗?

【设计意图】通过一些生活实例启发学生思考,猜想不等式的性质1

2、举例说明,验证结论

设计小活动:你说我验

同桌合作,举几个例子,可以是数字例子,也可以是生活当中的例子。相互验证一下你猜想的是否正确

【设计意图】通过这个活动旨在增强教学的有效性,一方面增强学生间的合作意识,另一方面增强学生思考的严谨性。活跃课堂气氛,掀起课堂的一个小高潮。

学生总结,教师板书,以及注意引导学生理解“同一个整式”的含义。

3、类比等式的性质2,使学生发现问题:不等式是否有类似的性质

不等式的性质2,3是这一节的重点、难点,在这个知识点的处理上,完全放手给学生,让学生自己发现,不等号没变,在什么情况下不变?不等号发生了改变,在什么情况下发生了改变?让学生自己的思维发生碰撞,再套用乘以或除以一个数已经不能满足需要了,因此,必须分成正数和负数两种情况。这种分类不是老师硬塞给学生的,而是水到渠成的。让学生再举几例试试,发现有没有类似的结论。

【教法说明】为了突破学生对不等式性质3理解的困难,根据学生的认知规律采取化抽象为具体的方法来设计教学过程。为了体现以学生

为本的课堂教学理念,在教学过程中主要采用探索发现法和启发式教学法,即观察猜测---直观验证---得出性质,突出时间、结果和体验学生有效学习的三个重要指标,教学过程应该成为学生的一种愉悦的情绪生活和积极的情感体验。基于此,改变以往给学生画好框架,让学生跟着老师的思路走的教学模式,大胆放手给学生,从而培养学生的能力。这种方式能再次掀起小高潮。让学生各有所获,从不懂到懂,从少知到多知,从不会到会,从不能到能。学生通过观察,类比,猜想,验证,应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性和系统性.

师生活动:由学生概括总结不等式的性质2,3,同时教师板书.

4、例题讲解,探究新知

例1将下列不等式化成“xa”或“xa”的形式

(1)x-5-1(2)-2x3

解:(1)根据不等式的基本性质1,两边都加上5,得x-1+5即x4

(2)根据不等式的基本性质3,两边都除以-2,得X-3/2

【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.

【设计意图】应用性质精讲精练,对不等式进行变形,加强对不等式性质的理解,规范书写格式

例2:对习题1进行适当的改编:已知ab,填空并连线:

(1)a-3____b-3根据不等式的性质1

(2)6a____6b根据不等式的性质2

(3)-a_____-b根据不等式的性质3

(4)a-b____0

教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.

注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力

5、小试牛刀:断正误,正确的打“√”,错误的打“×”

①∵∴( ) ②∵∴( )

③∵∴( ) ④若,则∴,( )

学生活动:一名学生说出答案,其他学生判断正误.

答案:①√ ②× ③√ ④×

【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错

6、拓展思维,培养能力

比较2a与a的大小

【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。

7、分层布置作业必做题:b,填空并连线:(1)a-3____b-3根据不等式的性质1

(2)6a____6b根据不等式的性质2

(3)-a_____-b根据不等式的性质3

(4)a-b____0

教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:做此练习题时,应启发学生将所做习题与题中已知条件进行对比,例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.

【设计意图】连线改变以往简单说明理由的形式,增加趣味性,同样让学生明白言之要有理,推理要有依据,这样学生更容易接受。逐步培养学生的逻辑思维能力5、小试牛刀:断正误,正确的打“√”,错误的打“×”①∵∴( ) ②∵∴( )③∵∴( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√ ②× ③√ ④×

【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错6、拓展思维,培养能力比较2a与a的大小

【设计意图】改变学生的思维定势:2a一定比a大,培养学生的分类讨论的思想。

《等式的性质说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式